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Hawking evaporation of photons in a Vaidya–de Sitter black hole is investigated by
using the method of generalized tortoise coordinate transformation. Both the location
and the temperature of the event horizon depend on the time. It is shown that Hawking
radiation of photons exists only for the complex Maxwell scalarφ0 in the advanced
Eddington–Finkelstein coordinate system. This asymmetry of Hawking radiation for
different components of Maxwell fields probably arises from the asymmetry of space-
time in the advanced Eddington–Finkelstein coordinate system. It is shown that the
black body radiant spectrum of photons resembles that of Klein–Gordon particles.

KEY WORDS: Hawking radiation; Maxwell equation; Vaidya-type black hole; gen-
eralized tortoise coordinate transformation; Newman–Penrose formalism; null tetrad.

1. INTRODUCTION

Hawking’s investigation of quantum effects (Hawking, 1974, 1975) inter-
preted as the emission of a thermal spectrum of particles by a black hole event
horizon sets a significant landmark in black hole physics. In the last few decades,
much work has been done on the Hawking evaporation of black holes in some
spherically symmetric and nonstatic spacetimes (Kimet al., 1989; Li and Zhao,
1993; Ma and Yang, 1993, 1997; Yang and Zhao, 1994; Zhanget al., 1996; Zhao
et al., 1992; Zhuet al., 1994a,b). In a recent paper (Wu and Cai, 2001) (here refer
to Paper I), we reexamined the Hawking effect of Dirac particles in a Vaidya-type
black hole by means of the generalized tortoise transformation method. We consid-
ered simultaneously the asymptotic behaviors of the first-order and second-order
forms of Dirac equations near the event horizon, and eliminated the crossing terms
of the first-order derivatives in the second-order equations by using the relations
between the first-order derivatives of the radial Dirac equations. We showed that
the Hawking radiation exists only forP2 andQ1 components of Dirac spinors in
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virtue of the restriction imposed by the limiting form of its first-order equations.
We conceived that this asymmetry of the Hawking radiation for different spinorial
components probably originates form the asymmetry of spacetime in the advanced
Eddington–Finkelstein coordinate system.

In this paper, we deal with the thermal radiation of photons in a Vaidya–de
Sitter spacetime. The method used here is the same as that presented in Paper I,
namely, we consider the asymptotic behaviors of the first-order and second-order
forms of Maxwell equations in the vicinity of the event horizon, and recast each
second-order equation to a standard wave equation near the event horizon. The
location and the temperature of the event horizon are shown to be dependent on
the time. The black body radiation spectrum of photons resembles that of Klein–
Gordon scalar particles. We find that because of the restrictions put on the Hawking
radiation by the limiting form of the first-order Maxwell equations, not all Maxwell
complex scalars butφ0 displays the property of thermal radiation. This asymmetry
of Hawking radiation for different field components in a Vaidya-type spacetime is
thought to be a common feature shared by all particles with higher spins.

The paper is organized as follows: In Section 2, the explicit form of source-
less Maxwell equations within the framework of Newman–Penrose formalism
(Newman and Penrose, 1962) are written out by choosing an appropriate null
tetrad in the Vaidya–de Sitter geometry. By using the method of generalized tor-
toise coordinate transformation, the event horizon equation is extracted in Section 3
from the asymptotic forms of the radial parts of the first-order Maxwell equations
near the event horizon. Then the second-order radial equations are manipulated in
Section 4 by the same procedure and recast into a standard wave equation near the
event horizon; in the meanwhile, an exact expression of the “surface gravity” of the
event horizon is also obtained by adjusting the parameterκ. Section 5 is devoted to
deriving the thermal radiation spectrum of photons from the event horizon. Finally
we present some discussions in Section 6.

2. SOURCELESS MAXWELL EQUATIONS

The metric of a Vaidya black hole with a cosmological constant3 is given
in the advanced Eddington–Finkelstein coordinate system by

ds2 = 2dv(G dv− dr )− r 2(dθ2+ sin2 θ dϕ2), (1)

where 2G = 1− 2M/r −3r 4/3, in which massM(v) of the hole is a function of
the advanced timev.

The geometry of this Petrov type-D spacetime is characterized by two kinds
of surfaces of particular interest: the apparent horizonrAH = 2M (coincides with
the timelike limit surfacesrTLS) and the event horizonrEH = rH. The apparent
horizon is the outer most trapped surface, while the event horizon is necessarily
a null surfacer = r (v) that satisfies the null-surface conditionsgi j ∂i F∂ j F = 0
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andF(v, r ) = 0. Traditionally the latter is calculated approximately by the simple
physical condition that the photons at the event horizon are stuck or unaccelerated
in the sense thaẗr ≈ 0. An effective method for determining the location of the
event horizon of a dynamic black hole is the generalized tortoise coordinate trans-
formation (GTCT), with which we can apply it to the null-hypersurface equation
gi j ∂i F∂ j F = 0 and then take the limits approaching the event horizon. However
in Paper I, the event horizon equation is extracted from the asymptotic forms of
the radial parts of the first-order Dirac equations near the event horizon. In this
paper, we derive it by the same procedure but with the Maxwell equations in place
of the Dirac equations here.

When the back reaction of the massless spin-1 test particles on the back-
ground geometry is neglected, the electromagnetic field equation is given by the
Maxwell equation on a fixed spacetime (1). In order to write out its explicit form
in the Newman–Penrose (Newman and Penrose, 1962) formalism, we establish
the following complex null-tetrad system{l , n, m, m̄} that satisfies the orthogonal
conditionsl · n = −m · m̄= 1. Thus the covariant one-forms can be written as

l = dv, m= −r√
2

(dθ + i sinθ dϕ),

n = G dv− dr, m̄= −r√
2

(dθ − i sinθ dϕ), (2)

and their corresponding directional derivatives are

D = − ∂
∂r

, δ = 1√
2r

(
∂

∂θ
+ i

sinθ

∂

∂ϕ

)
,

1 = ∂

∂v
+ G

∂

∂r
, δ̄ = 1√

2r

(
∂

∂θ
− i

sinθ

∂

∂ϕ

)
. (3)

It is not difficult to determine the nonvanishing Newman–Penrose complex spin
coefficients (Newman and Penrose, 1962) in the above null tetrad as

ρ = 1/r, γ = −G,r /2= −dG/2dr,

µ = G/r, β = −α = cotθ/(2
√

2r ). (4)

Inserting for the apporiate spin coefficients into the sourceless Maxwell equa-
tions (Carmeli, 1982; Chandrasekhar, 1983; Newman and Penrose, 1962) in the
Newman–Penrose formalism (Newman and Penrose, 1962)

(D − 2ρ)φ1− (δ̄ + π̃ − 2α)φ0 = −κ̃φ2,

(δ − 2τ )φ1− (1+ µ− 2γ )φ0 = −σφ2,

(D + 2ε − ρ)φ2− (δ̄ + 2π̃ )φ1 = −λ̃φ0,

(δ + 2β − τ )φ2− (1+ 2µ)φ1 = −ν̃φ0, (5)
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we obtain (
∂

∂r
+ 2

r

)
φ1+ 1√

2r
L1φ0 = 0,(

D + G

r
+ G,r

)
φ0− 1√

2r
L†0φ1 = 0,(

∂

∂r
+ 1

r

)
φ2+ 1√

2ρ
L0φ1 = 0,(

D + 2G

r

)
φ1− 1√

2ρ∗
L†1φ2 = 0. (6)

Here we have defined operators:

D = ∂

∂v
+ G

∂

∂r
,

Ln = ∂

∂θ
+ n cotθ − i

sinθ

∂

∂ϕ
,

L†n =
∂

∂θ
+ n cotθ + i

sinθ

∂

∂ϕ
.

By substituting80 = rφ0,81 =
√

2r 2φ1, and82 = rφ2 into Eq. (6), we have

∂

∂r
81+ L180 = 0, 2r 2(D + G,r )80− L†081 = 0,

2r 2 ∂

∂r
82+ L081 = 0, D81− L†182 = 0. (7)

3. EVENT HORIZON

Equation (7) can be decoupled as

80 = R0(v, r )S0(θ , ϕ), 81 = R1(v, r )S1(θ , ϕ), 82 = R2(v, r )S2(θ , ϕ)

to the radial part

∂

∂r
R1+ λR0 = 0, 2r 2(D + G,r )R0+ λR1 = 0,

2r 2 ∂

∂r
R2+ λR1 = 0, DR1+ λR2 = 0, (8)

and the angular part

L1S0 = λS1, L†0S1 = −λS0,

L0S1 = λS2, L†1S2 = −λS1, (9)
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whereλ = √`(`+ 1) is a separation constant. All functionsS0(θ , ϕ), S1(θ , ϕ), and
S2(θ , ϕ) are, respectively, spin-weighted spherical harmonics,pỲ m(θ , ϕ) with spin
weight p = 1, 0,−1, satisfying the following equation (Goldberget al., 1968)[

∂2

∂θ2
+ cotθ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
+ 2i p cosθ

sin2 θ

∂

∂ϕ

− p2 cot2 θ + p+ (`− p)(`+ p+ 1)

]
pY`m(θ , ϕ) = 0. (10)

As to the Hawking radiation, we should be concerned about the asymptotic
behaviors of the radial part of Eq. (8) in the vicinity of the event horizon. Because
the Vaidya–de Sitter spacetime is spherically symmetric, we can introduce as a
working ansatz the following GTCT as in the Paper I

r∗ = r + 1

2κ
ln[r − rH(v)], v∗ = v − v0, (11)

whererH = r (v) is the location of the event horizon, andκ is an adjustable param-
eter and is unchanged under the tortoise transformation. The parameterv0 is an
arbitrary constant that characterizes the initial instant of the hole. From formula
(11), we can deduce some useful relations for the derivatives as follows:

∂

∂r
= ∂

∂r∗
+ 1

2κ(r − rH)

∂

∂r∗
,

∂

∂v∗
= ∂

∂v∗
− ṙH

2κ(r − rH)

∂

∂r∗
.

The quantitieṡrH = ∂rH/∂v is the rate of the event horizon varying in timev. It
describes the evolution of the black hole event horizon in the time, which reflects
the presence of quantum ergosphere near the event horizon.

Now let us consider first the asymptotic behaviors of Eq. (8) near the event
horizon. Under the transformations (11), Eq. (8) can be reduced to the following
forms

∂

∂r∗
R1 = 0, 2r 2

H(ṙH − G)
∂

∂r∗
R0 = 0,

2r 2
H
∂

∂r∗
R2 = 0, (ṙH − G)

∂

∂r∗
R1 = 0, (12)

after having taken ther → rH(v0) andv→ v0 limits.
From Eq. (12), we know thatR1(r∗) and R2(r∗) are regular on the event

horizon,

∂

∂r∗
R1 = ∂

∂r∗
R2 = 0. (13)

Thus, a reasonable solution to Eq. (12) is that the derivatives∂
∂r∗

R0 do not vanish.
The sole possibility we are left with for the existence of a nontrial solution ofR0
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is (as forrH 6= 0)

2G(rH)− 2ṙH = 0, (14)

which determines the location of the event horizon. It is interesting to note that
the event horizon equation (14) coincides with that inferred from the null-surface
equationgi j ∂i F∂ j F = 0. BecauserH depends on timev, the location of the event
horizon and the shape of the black hole change with time.

4. HAWKING TEMPERATURE

In the preceding section, we have deduced the event horizon equation from
the limiting form of the separated radial part of the first-order Maxwell equations.
Applying a similar procedure to its second-order forms, we can derive the Hawking
temperature and the thermal radiation spectrum. A straightforward calculation
gives the second-order radial equations

2r 2

[
G
∂2

∂r 2
+ ∂2

∂v ∂r
+ 2

(
G,r + G

r

)
∂

∂r
+ 2

r

∂

∂v
+ 2G,r

r
+ G,rr

]
×R1− λ2R1 = 0, (15)

2r 2

(
G
∂2

∂r 2
+ ∂2

∂v ∂r
+ G,r

∂

∂r

)
R1− λ2R1 = 0, (16)

2r 2

(
G
∂2

∂r 2
+ ∂2

∂v ∂r
+ 2G

r

∂

∂r

)
R2− λ2R2 = 0. (17)

Given the GTCT in Eq. (11) and after some tedious calculations, Eqs. (15)–
(17) have the following limiting forms near the event horizonr = rH

{[
A

2κ
+ 4G(rH)− 2ṙH

]
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗

+
[
−A+ 4G,r (rH) + 4G(rH)− 4ṙH

rH

]
∂

∂r∗

}
R0

=
{(

A

2κ
− 2ṙH

)
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗
+ [−A+ 4G,r (rH)]

∂

∂r∗

}
R0 = 0, (18)

{[
A

2κ
+ 4G(rH)− 2ṙH

]
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗
+ [−A+ 2G,r (rH)]

∂

∂r∗

}
R1

=
[(

A

2κ
− 2ṙ H

)
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗

]
R1 = 0, (19)



P1: GMX/GDX/GGN/GOQ P2: GCR

International Journal of Theoretical Physics [ijtp] pp365-ijtp-366318 February 5, 2002 8:26 Style file version Nov. 19th, 1999

Hawking Radiation of Photons in a Vaidya–de Sitter Black Hole 565

{[
A

2κ
+ 4G(rH)− 2ṙH

]
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗
+
[
−A+ 4G(rH)

rH

]
∂

∂r∗

}
R2

=
[(

A

2κ
− 2ṙH

)
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗

]
R2 = 0, (20)

whenr approachesrH(v0) andv nearsv0. In the above calculations, we have used
relations 2G(rH) = 2ṙH and ∂

∂r∗
R1 = ∂

∂r∗
R2 = 0. The coefficientA is an infinite

form of 0/0 type with a finite result, treated by using the L’ Hˆospital rule,

A = lim
r→rH(v0)

2G− 2ṙ H

r − r H
= 2G,r (r H).

To recast Eqs. (18), (19), and (20) into a standard wave equation near the
event horizon, we select the adjustable parameterκ in them such that it satisfies

A

2κ
+ 2G(r H) = G,r (r H)

κ
+ 2ṙ H ≡ 1, (21)

which means the “surface gravity” of the horizon is

κ = G,r (r H)

1− 2G(r H)
= G,r (r H)

1− 2ṙ H
, (22)

where we have used Eq. (14).
With such a parameter adjustment, these wave equations (18)–(20) can be

reduced to (
∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗
+ 2C

∂

∂r∗

)
R0 = 0, (23)(

∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗

)
R1 = 0, (24)(

∂2

∂r 2∗
+ 2

∂2

∂r∗ ∂v∗

)
R2 = 0, (25)

whereC = G,r (rH). Equations (23)–(25) have a standard form of wave equation in
the vicinity of the event horizon. We point out that the above parameter adjustment
is an important step in our discussions.

5. THERMAL RADIATION SPECTRUM

Combining Eqs. (24) and (25) with∂
∂r∗

R1 = ∂
∂r∗

R2 = 0, we know thatR1 and
R2 are independent ofr∗ near the event horizon. The solutionsR1 ∼ e−iωv∗ and
R2 ∼ e−iωv∗ indicate that Hawking radiation does not exist for81 and82.

Now separating variables from Eq. (23) asR0 = R0(r∗)e−iωv∗ , one gets

R′′0 = 2(iω − C)R′2, R0 = c1 e2(iω−C)r∗ + c2. (26)
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The incoming wave solution and the outgoing wave solution to Eq. (23) are,
respectively,

Rin
0 ∼ e−iωv∗ ,

Rout
0 ∼ e−iωv∗e2(iω−C)r∗ , r > r H. (27)

Near the event horizon, we haver∗ ∼ (1/2κ) ln(r − rH). Clearly, the outgoing wave
Rout

0 (r > r H) is not analytic at the event horizonr = rH, but can be analytically
extended from the exterior of the hole into the interior of the hole by the lower
complexr plane

(r − rH)→ (rH − r ) e−iπ

to

R̃out
0 = e−iωv∗ e2(iω−C)r∗ eiπC/κ eπω/κ , r < r H. (28)

Following the method of Damour–Ruffini–Sannan’s (Damour and Ruffini,
1976; Sannan, 1988), the relative scattering probability of the outgoing wave at
the event horizon horizon and the thermal radiation spectrum of photons from the
event horizon of the black hole are easily obtained∣∣∣∣Rout

0

R̃out
0

∣∣∣∣2 = e−2πω/κ , 〈Nω〉 ∼ 1

eω/T − 1
, (29)

in whichm is the azimuthal quantum number, and the Hawking temperature is

T = κ

2π
= 1

4πrH
· MrH −3r 4

H/3

MrH −3r 4
H/6
· (30)

The thermal radiation spectrum (29) due to the Bose–Einstein statistics of photons
shows that the black hole emits radiation just like a black body emitting scalar
particles. The temperature depends on the time and is consistent with that derived
from the investigation of the thermal radiation of Dirac particles in a Vaidya–de
Sitter black hole (Wu and Cai, 2001) with a vanishing electric charge (Q = 0).

6. CONCLUSIONS

In this paper, we have studied the Hawking radiation of photons in a Vaidya–
de Sitter black hole. The location and the temperature of the event horizon given
by Eqs. (14) and (22), respectively, depend on the advanced timev. They can re-
cover the well-known results previously derived in the discussion on the Hawking
evaporation of Klein–Gordon and Dirac particles in the same spacetime. Equa-
tion (29) shows that the thermal radiation spectra of photons have the same form
as that of Klein–Gordon particles in a Vaidya-type black hole with a cosmological
constant3.
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In summary, we have dealt with the asymptotic behaviors of the separated ra-
dial equations near the event horizon, not only its first-order form but also its
second-order form. We find that the limiting form of its first-order equations
puts very strong restriction on the Hawking effect, that is, not all components
of Maxwell complex scalars butφ0 displays the property of thermal radiation.
As is revealed in Paper I, we argued that this asymmetry of Hawking radiation
for different components of Maxwell fields probaly stem from the asymmetry of
spacetimes in the advanced Eddington–Finkelstein coordinate. We think this is a
common character shared by the thermal radiation of particles with higher spins
in any Vaidya-type spherically symmetric black hole.
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